

Atelier sur les indicateurs environnementaux en eau douce

du lundi 12 au vendredi 16 mars 2010

Exemple de construction d'un indice multimétrique

Virginie Archaimbault

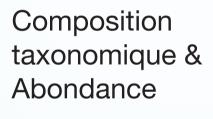
Session Plénière 6 : Vers un indice intégré d'état écologique des masses d'eau

Jeudi 15 avril 2010

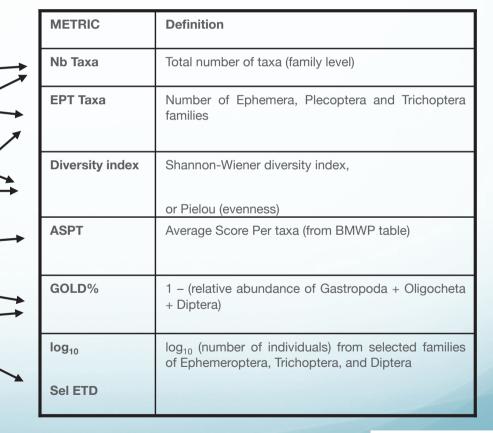
Qu'est ce qu'un indice multimétrique? Indices qui combinent plusieurs métriques!

Métrique : caractéristique biotique qui évolue de façon prévisible avec une influence anthropique croissante sur le milieu

(Barbour *et al.*, 1999)


- Tendent à fournir une analyse intégrée de la communauté biologique d'un site donné à partir d'une variété de mesures biologiques et de connaissances sur la faune en place (Karr & Chu, 1999)
- Indices multi-pressions qui servent d'évaluation de la qualité globale du milieu + Indices de Diagnostics
- Chaque métrique individuelle est prévisible et reliée à un impact spécifique causé par une altération du milieu
- Utilisables à large échelle

Exemple de l'ICM : Indice Commun Multimétrique

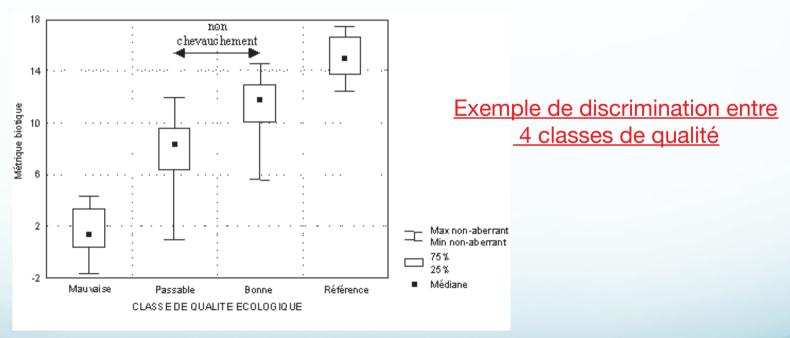

Indice d'évaluation de l'altération des écosystèmes

Diversité

Taxons sensibles:

Groupes majeurs

Réponses des métriques composant l'ICM aux pressions (l'altération des écosystèmes)


Metrics	Organic + Nutrient	Hydro- Morphology	Toxics	General
Total Nb taxa	Х	Х	Х	XX
EPT taxa	XX	(x)	(x)	XX
Diversity index	Х		X	X
ASPT'	XXX		(x)	
1 - GOLD	Х			
log Sel ETD	Х	XX		XX

Principe général : Sélection des métriques

- Corrélations métrique vs gradient de stress
- Evaluation graphique et comparaison du pouvoir de discrimination entre classes de qualité écologiques des différentes métriques

 Sélection parmi les métriques discriminantes de celles amenant des informations non redondantes

en Nouvelle-Calédoni

Principe général : Construction de l'indice

- Standardisation des valeurs des métriques (valeurs comprises entre 0 et 1) pourcentage du 95ème centile pour les métriques décroissantes avec le gradient de perturbation (ou du 5ème centile pour les métriques croissantes)
- Addition des scores des métriques sélectionnées
- Limites inter-classes : 1er quartile de la classe de qualité supérieure

référence

passable

mauvais

Exemple pour l'établissement de limites inter-classe

Quels types de métrique utiliser ?

- Composition et Abondance : toutes les métriques donnant les proportions relatives d'un taxon ou d'un groupe taxonomique par rapport au nombre total d'individu
- Richesse et Diversité: les métriques donnant le nombre de taxon d'une entité taxonomique définie, aux différents niveaux d'identification systématique choisis (la richesse totale et tous les indices de diversités classiques étant inclus)
- Sensibilité ou Tolérance : toutes les métriques reliées à un taxon connu pour répondre de manière sensible ou tolérante à un stress donné (exprimées en présence, absence ou abondance)
- Métriques fonctionnelles : métriques qui s'adressent à une fonction écologique ou biologique d'un taxon, comme par exemple des caractéristiques morphologiques, physiologiques, comportementales d'un taxon, sa distribution spatiale et/ou ses préférendum écologiques (substrat, température, pH, écorégion....)

Combinaison variable de métriques en fonction de :

- de l'écorégion (= zone biogéographique...)
- du type de cours d'eau
 - = entités homogènes, "artificiellement" délimitées, mais à forte signification écologique, définies par :
 - une hétérogénéité interne, biotique (e.g. composition taxonomique) et abiotique (e.g. physico-chimie et hydromorphologie) réduite
 - une nette discontinuité biotique et abiotique avec les autres types

(Hering et al. 2004)

Combinaison variable de métriques en fonction de :

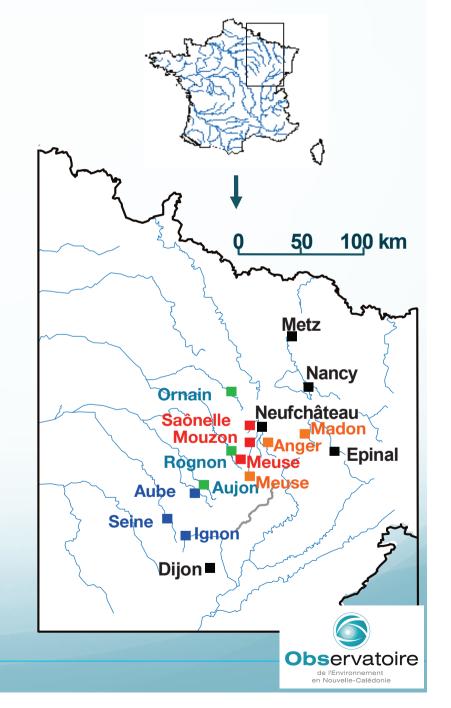
- de l'écorégion (= zone biogéographique...)
- du type de cours d'eau
- du type de perturbation à identifier
 - Pollution organique
 - Contamination toxique
 - Acidification
 - Dégradation de l'habitat (rectification)
 - Perturbation hydrologique (régulation par barrage, éclusées)

Exemple concret

1 type de cours d'eau

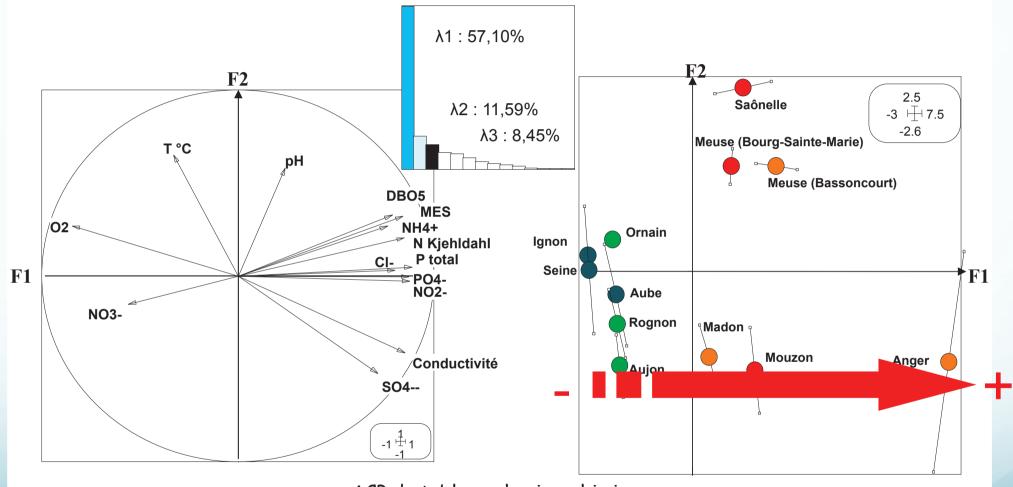
écorégion 8

altitude : 200-800 m


taille : 10-1000 km²

substrat : marno-calcaire

Perturbation organique


12 sites échantillonnés

- 3 sites de référence
- 3 sites de bonne qualité
- 3 sites de qualité passable
- 3 sites de mauvaise qualité

Détermination du gradient de stress et corrélation des métriques

ACP du tableau physico-chimique

212 métriques calculées : Corrélation de rang de Spearman chaque métrique et le premier axe factoriel de l'ACP

Sélection des métriques

1- Degré de liaison des métriques avec le gradient de perturbation

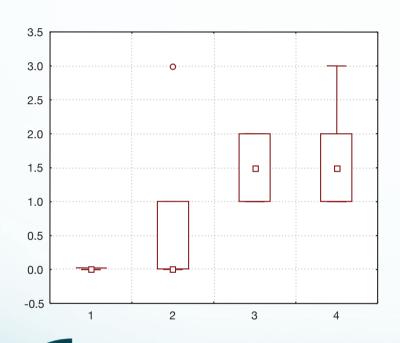
72 métriques conservées, dont 40 modalités pour 19 traits biologiques et écologiques

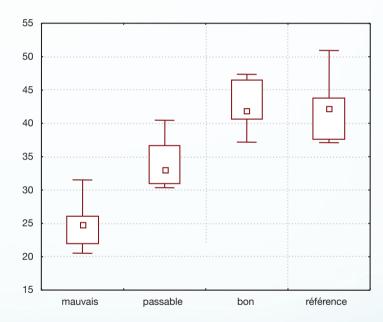
Sélectionnées si la valeur absolue de R > 0,5

2- Pouvoir de discrimination des métriques

21 métriques conservées, dont 14 modalités pour 8 traits biologiques et écologiques

Sélectionnées pour leur capacité de discrimination entre sites des deux classes supérieures et sites des deux classes inférieures


Box Plot


Sélection des métriques

Sélectionnées pour leur capacité de discrimination entre sites des deux classes supérieures et sites des deux classes inférieures

Aberrants

<u>Distribution des scores du</u> <u>nombre de taxons EP</u>

<u>Distribution des scores de la modalité</u>

<u>'oligotrophe'</u>

<u>(var. statut trophique)</u>

8 métriques sélectionnées

Métriques prises en compte

Nb taxons de Plécoptères

% taxons de Plécoptères et d'Ephéméroptères

ASPT

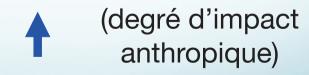
Fréquence relative (%) d'utilisation du trait « Nb ann. Générations > 1 »

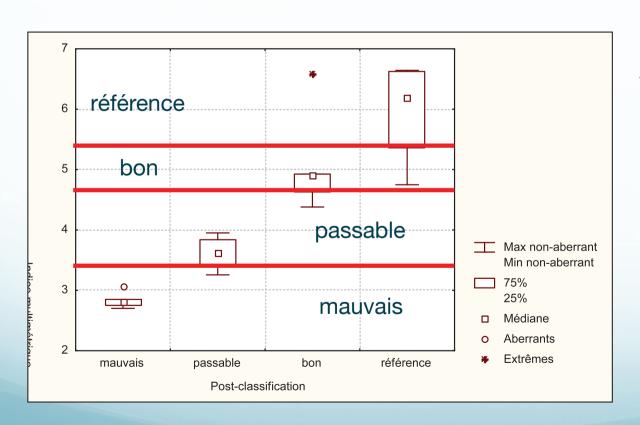
Fréquence relative (%) des « deposit feeders »

Fréquence relative (%) des taxons caractéristiques du métarithron

Fréquence relative (%) des taxons limnophiles

Fréquence relative (%) des taxons oligotrophes




(degré d'impact anthrc

Création de l'indice

Addition des scores des 8 métriques sélectionnées : valeur de l'indice variable de 0 à 8

Proposition de limites inter-classes et valeurs seuils

Valeurs seuils

5,36

3,39

