

DÉVELOPPEMENT CIGUATÉRIQUE

SUIVI DES POPULATIONS CIGUATOXINOGÈNES DANS LA RÉGION DE LA BAIE DU PRONY ET DU CANAL DE LA HAVANNAH.

CAMPAGNE 2011.

AEL - LEA

5 mars 2012

Suivi du risque ciguatérique	2
Photos de couverture AEL : Vue en d'ensemble de la Baie du Prony.	

CONTRAT DE CONSULTANCE

AEL - LEA

Convention n° 101214-AEL-OEIL-01

Développement ciguatérique

Suivi des populations ciguatoxinogènes dans la région de la Baie du Prony et du canal de la Havannah.

Campagne 2011.

Kerbrat A.S.

Goyaud A.

Fernandez J.M.

Nombre de pages : 39

		N/Ref			V/Ref					
Identification										
Titre complet	I	oppement ciguatérique : Suiv du Prony et du canal de la Hav		_	_					
Auteurs	Kerbra	at A.S., Goyaud A., Fernandez	ي J.M.							
Ce rapport final présente le bilan du suivi ciguatérique dans la région de la Baie du Pret du Canal de la Havannah sur la période de janvier à décembre 2011 mené par laboratoire AEL à la demande de l'OEIL. Il présente la stratégie d'échantillonnage, la pertinence du choix des stations, la techni d'échantillonnage ainsi que les résultats des observations faites de janvier à décem Durant ce programme, 12 missions mensuelles ont été réalisées et 341 échantillons été collectés. Les observations de ces échantillons associées aux observations de terrain ne mettent en évidence d'efflorescence de micro-organisme ciguatoxinogène dans les zones suivie Ainsi, durant la période de janvier 2011 à janvier 2012 et en tenant compte l'information de prévention donnée par le suivi des micro-organismes, le ris ciguatérique dans le Sud peut être considéré comme faible.										
APPROBATION										
FONCTION		NOMS	 	VISA	DATE					
Rédacteur		Anne-Sophie KERBRAT	4	1003	19/01/2011					
Vérificateur 1		Adeline GOYAUD		A	20/01/2012					
Vérificateur 2		Jean-Michel FERNANDEZ		horround	20/01/2012					
Approbateur(s)		Jean-Michel FERNANDEZ		horiend	03/02/2012					
EVOLUTION										
VERSION		DESCRIPTION DES MISES A	JOUR		DATE					
					05/03/2012					
COPIE - DIFFUSION										
NOM		ORGANISME								
			·							

Ce rapport est cité comme suit :

KERBRAT A.S., GOYAUD A., FERNANDEZ J.M. (2012). Développement ciguatérique : Suivi des populations ciguatoxinogènes dans la région de la Baie du Prony et du canal de la Havannah - Campagne 2011 - (Rapport final). Contrat AEL/OEIL, n° **101214-OE-01.** 39p.

TABLE DES MATIERES

INTROD	DUCTION	7
CONTEX	XTE ET OBJECTIFS DE L'ÉTUDE	8
I.A.	RAPPEL HISTORIQUE	
I.B.	OBJECTIFS DE L'ÉTUDE	g
MATÉR	RIEL ET MÉTHODES	10
I.A.	Stratégie d'échantillonnage	10
I.A	A.1. Répartition des stations	10
I.A	A.2. Fréquence d'échantillonnage	12
I.B.	MÉTHODE D'ÉCHANTILLONNAGE	12
I.B	3.1. Travail de terrain	12
I.B	3.2. Travail de laboratoire	13
RESULT	TATS	14
I.A.	RÉCOLTE	
I.B.	DINOFLAGELLÉS	16
I.C.	Cyanobactéries	16
DISCUS	SSION	18
I.A.	STRATÉGIE D'ÉCHANTILLONNAGE ET PERTINENCE DES STATIONS SUIVIES	18
I.B.	EVALUATION DU RISQUE CIGUATÉRIQUE PAR LE SUIVI DES MICRO-ORGANISMES	18
I.C.	EVALUATION DU RISQUE CIGUATÉRIQUE EN BAIE DU PRONY : TOXICITÉ DES POISSONS	19
REFERE	NCES	21
LISTE D	PES FIGURES	22
LISTE D	PES TABLEAUX	23
ANNEX	(ES	24
Anne	EXE 1	25
	NÉES DES PRÉLÈVEMENTS ET DES OBSERVATIONS MICROSCOPIQUES PAR MISSION.	
Anne	EXE 2	38
	ER DES CHARGES POUR L'ÉVALUTION DU RISQUE CIGUATÉRIQUE	

INTRODUCTION

Ce rapport présente les conclusions du projet conduit par le laboratoire AEL/LEA afin de réaliser un suivi des populations de micro-organismes ciguatoxinogènes dans la zone sud du lagon de Nouvelle-Calédonie. Le programme de travail a été défini à la demande de l'OEIL (Observatoire de l'environnement, Province Sud) dans le cadre du suivi environnemental marin de la région Sud.

Etats actuels des connaissances sur l'intoxication ciguatérique

La ciguatéra ou «gratte» est une intoxication due à la consommation de poissons tropicaux associés aux récifs coralliens et habituellement comestibles (Lehane et Lewis, 2000; Laurent et al., 2005). Cette intoxication a pour origine la bioaccumulation de toxines produites par des micro-algues (*Gambierdiscus* spp.) et certaines Cyanobactéries filamenteuses (ordre des Oscillatoriales) (Bagnis et al., 1980; Laurent et al., 2008; Golubic et al., 2009; Kerbrat, 2010; Kerbrat et al., 2011; Laurent et al., 2011). Il est établi que les modifications de certains facteurs environnementaux peuvent favoriser le développement de zones dites ciguatériques. La prolifération de ces organismes (Dinoflagellés et Cyanobactéries) est alors largement favorisée par la création de «nouvelles surfaces» colonisables par le biais de macro-algues opportunistes, supports privilégiés des Dinoflagellés ou directement par les Cyanobactéries. Si ces types de micro-organismes potentiellement producteurs de toxines sont effectivement toxiques, les toxines produites peuvent rentrer dans la chaîne alimentaire via les herbivores ou les mollusques (Figure 1).

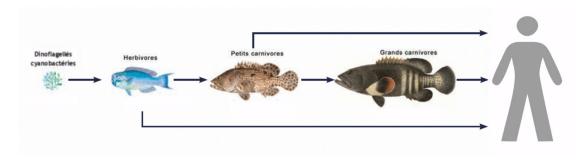


Figure 1 : Schéma de l'intoxication par la chaîne alimentaire via les herbivores ou les mollusques.

CONTEXTE ET OBJECTIFS DE L'ÉTUDE

L'implantation des infrastructures minières de Vale NC dans le sud de la Nouvelle-Calédonie entraîne potentiellement un changement du paysage récifal de la zone environnante, notamment en raison de :

- •la construction du port dans la Baie du Prony ;
- •l'augmentation de la fréquentation de la baie (navires marchands ou activités récréatives) ;
- •la construction des infrastructures terrestres en amont des bassins versants qui peuvent augmenter les apports terrigènes.

I.A.RAPPEL HISTORIQUE

Depuis 2005, les bases d'un suivi des populations de micro-organismes ciguatoxinogènes de la Baie du Prony ont été mises en place par l'Institut de Recherche pour le Développement de Nouvelle-Calédonie (IRD) à la demande du département Environnement de Vale-Inco NC. Une méthodologie d'étude des populations de Dinoflagellés benthiques ciguatériques a donc été retenue (Chinain et al., 1999) et adaptée aux conditions environnementales.

De plus, et afin de mieux évaluer le risque ciguatérique dans les milieux lagonaires, des travaux de thèse ont permis de mettre en place une méthode complète validée et calibrée pour l'environnement du lagon sud de Nouvelle-Calédonie (Kerbrat, 2010). Celle-ci tient compte en particulier, de la toxicité des poissons pêchés dans les zones d'études en plus du suivi des populations de micro-organismes potentiellement toxiques. Ainsi, l'architecture de cette méthodologie est basée sur deux volets :

- •le suivi des types de populations de micro-organismes ciguatoxinogènes benthiques (Dinoflagellés et Cyanobactéries), afin d'anticiper les risques ciguatériques grâce à des campagnes mensuelles ;
- •l'évaluation de la toxicité de « poissons sentinelles » à différents niveaux de la chaîne alimentaire pour établir le risque potentiel déjà présent ou émergent, grâce à des campagnes annuelles.

Ainsi, en Baie du Prony, à Bonne Anse et en sortie de Port Boisé, la mise en application de cette méthode dans des zones de développement ciguatérique potentiel a permis d'établir une « carte ciguatérique » ou « état de référence » des zones, avant le démarrage de l'activité de l'usine de Vale NC (Kerbrat et Laurent, 2010, rapport Vale NC).

I.B.OBJECTIFS DE L'ÉTUDE

A l'heure de la mise en production de l'usine de Vale NC, le suivi du développement ciguatérique potentiel s'impose comme une nécessité dans le secteur sud allant de la Baie du Prony à la Baie Kwé. Actuellement, en termes de suivi sanitaire lié au risque ciguatérique, il n'existe aucune contrainte réglementaire pour l'exploitant Vale NC, seule implantation minière et industrielle dans la zone.

Aussi, après le développement de la méthode de suivi ciguatérique par l'IRD, le conseil scientifique de l'OEIL a choisi de financer la surveillance des populations de Dinoflagellés et de Cyanobactéries afin d'anticiper le risque ciguatérique. Le suivi des micro-organismes (nature, densité et toxicité) s'associe à l'élément de **prévention** d'un risque potentiel ciguatérique.

Remarques:

- 1) Seul, le suivi des micro-organismes ne permet pas d'évaluer le risque présent et actuel lié à la consommation de poisson pêché dans la Baie du Prony lors de l'année 2011. Les incertitudes portées sur l'évaluation du risque ciguatérique inhérentes aux deux échelons de l'étude (micro-organismes et poissons) tendent à être minimisées par l'étude concomitante de ces niveaux (Beliaeff et al., 2011).
- 2) Cette méthode utilisée pour évaluer le risque ciguatérique d'une zone constitue la base du cahier des charges présenté en Annexe 2.

MATÉRIEL ET MÉTHODES

I.A.STRATÉGIE D'ÉCHANTILLONNAGE

Le suivi ciguatérique est réalisé mensuellement à travers des missions à « la journée ». Une équipe de plongeurs d'AEL (2 à 3 personnes) est missionnée pour effectuer les prélèvements en plongée libre ou en plongée autonome.

I.A.1.RÉPARTITION DES STATIONS

Le suivi des populations de micro-organismes ciguatérigènes a été réalisé sur quatorze stations réparties dans la région sud, principalement en Baie du Prony, comprenant les zones plus restreintes du port et du récif du Prony, mais également en Baie Kwé et à Port Boisé (Tableau 1 ; Figure 2). La plupart de ces stations était déjà initialement inclue dans les premiers programmes de suivi ciguatérique (2005-2010) : neuf stations suivies depuis 2005 et trois depuis 2007.

Suite à la demande de l'OEIL et aux préconisations d'AEL, deux nouvelles stations ont été intégrées dans ce programme (Cig 01 et Cig 11), depuis de début 2011.

Tableau 1 : Liste des stations suivies : zone, nom et coordonnées GPS (référentiel WGS84).

Code	Zone	Nom de la station	Latitude	Longitude
CIG 01	Baie Kwé	Baie Kwé	-22.349180°	166.984716°
CIG 02	Port Boisé	Port Boisé	-22.357489°	166.967517°
CIG 03	Récif Prony	Récif Prony*	-22.396875°	166.882285°
CIG 04	Récif Prony	Récif Prony intérieur*	-22.392731°	166.883564°
CIG 05	Baie du Prony	Bonne Anse*	-22.388227°	166.891974°
CIG 06	Zone du port	Face port	-22.357549°	166.896558°
CIG 07	Zone du port	Port	-22.354336°	166.892785°
CIG 08	Zone du port	Tuyau	-22.348899°	166.889417°
CIG 09	Zone du port	Vieux wharf	-22.343088°	166.883182°
CIG 10	Baie du Prony	Plage*	-22.338228°	166.876802°
CIG 11	Baie du Prony	Creek Baie Nord	-22.331861°	166.877620°
CIG 12	Baie du Prony	Ilot Gabriel*	-22.331866°	166.867758°
CIG 13	Baie du Prony	Rade Nord*	-22.343495°	166.865439°
CIG 14	Baie du Prony	Face Casy*	-22.366960°	166.830874°

^{*}Stations de références

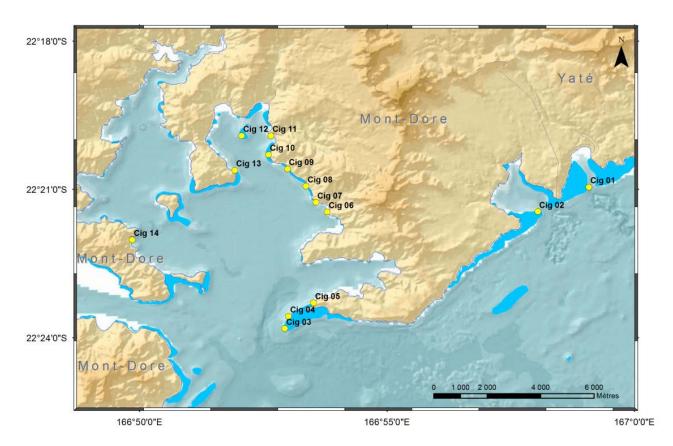


Figure 2 : Localisation des stations du suivi ciguatérique dans la zone du Sud (Baie du Prony à Port Boisé).

a) DESCRIPTIF DES STATIONS INITIALES PAR ZONE

Zone dite de « la Baie du Prony » et du « Récif Prony »

Les stations localisées en Baie du Prony constituant un ensemble dit de référence (n = 7 : Cig 03 ; Cig 04 ; Cig 05 ; Cig 10 ; Cig 12 ; Cig 13 et Cig 14) sont le témoin des paramètres environnementaux particuliers à la baie. Ces paramètres s'entendent en termes physico-chimiques (température, turbidité, salinité (apport d'eau douce), hydrodynamisme, etc.) et biologiques (espèces floristiques et faunistiques endémiques et/ ou adaptées à l'environnement). Ces stations ne subissent pas, à priori, de perturbations anthropiques liées directement à l'activité de Vale-NC.

A l'heure actuelle, la station Cig 14 est indemne d'activité anthropique directe. Cependant de futurs travaux doivent en principe avoir lieu sur l'îlot Casy; pour la suite du suivi, il faudra tenir compte d'éventuelles perturbations engendrées par la pose d'un câble sous-marin dans la zone.

- Zone du port

La zone du port comprend quatre stations situées sur des sites où des infrastructures portuaires et diverses influences anthropiques sont identifiées : quais de chargement (Cig 06 et Cig 07), endiguement autour du tuyau (Cig 08), « Vieux wharf » (Cig 09). Les prélèvements sur chacune de ces stations s'effectuent entre 0,5 et 5 m.

Port Boisé

La station nommée « Port Boisé » est située au niveau de la passe intérieure à une profondeur de 1 m (Cig 02). Cette station est potentiellement influée par les apports sédimentaires de la rivière.

b)NOUVELLES STATIONS : CIG 01 ET CIG 11

Les stations de la Baie Kwé (Cig 01) et la station située à l'embouchure du creek de la Baie Nord (Cig 11) sont des stations qui ont été créées dans le cadre de ce suivi : la première à la demande du conseil scientifique de l'OEIL et la seconde suite aux données supplémentaires collectées par le laboratoire AEL.

La **station de la Baie Kwé** (Cig 01) est située plus précisément sur le récif de la passe à une profondeur de 3 m. Elle est sujette à d'importants apports sédimentaires. L'objectif est d'évaluer l'effet des infrastructures terrestres en amont du creek (aires de stockage des résidus solides, mine) qui pourraient influer sur les apports sédimentaires au niveau de la Baie Kwé et donc sur son équilibre écologique.

La station appelée « Creek Baie Nord » (Cig 11) a été positionnée afin de suivre l'influence des apports accidentels en matière particulaire ; ce creek a subi les conséquences d'accidents en août 2006 et en avril 2009, affectant l'équilibre physico-chimique et biologique de la rivière. Ainsi, cette station située à l'embouchure de la rivière est sujette à de potentielles perturbations anthropiques, ce qui nécessite, entre autre, un suivi des populations de micro-organismes ciguatériques.

I.A.2.FRÉQUENCE D'ÉCHANTILLONNAGE

Pour la définition du risque, il est établi que la fréquence d'échantillonnage des micro-organismes (Dinoflagellés et Cyanobactéries) est d'ordre mensuel (Chinain et al., 1999 ; Lavoie et al., 2007 ; Golubic et al., 2009). En effet, l'adoption de cette fréquence permet de couvrir la variabilité de la toxicité des populations benthiques fixées sur des substrats (macro-algues et débris coralliens).

I.B.MÉTHODE D'ÉCHANTILLONNAGE

I.B.1.TRAVAIL DE TERRAIN

Sur les 14 stations de suivi, deux prélèvements de type « Dinoflagellés » sont effectués et des prélèvements de Cyanobactéries sont réalisés si la surface de recouvrement est supérieure à 5 m².

a) DINOFLAGELLÉS

Sur chaque station suivie, deux prélèvements de macro-algues sont effectués. Les macro-algues-support comme, par exemple celles du genre *Halimeda*, *Turbinaria*, *Dictyota* sont récoltés en plongée (bouteille ou libre) (Figure 3). Si aucune macro-algue ne couvre le fond, le support récolté est alors constitué des débris coralliens.

Récoltées dans des sacs en plastique, les macro-algues sont agitées vigoureusement afin de décrocher les Dinoflagellés de leur support (Figure 4). L'eau de mer chargée est ensuite filtrée. Les fractions collectées sont

passées sur des tamis de porosités différentes selon la taille moyenne des cellules de Dinoflagellés ciblés (20 et $45~\mu m$) puis récupérées et conservées pour être observées au microscope. Ces observations sont réalisées au laboratoire.

En cas d'efflorescence importante de micro-algues, une récolte plus abondante est effectuée en vue d'analyses toxicologiques.

Figure 3 : Exemples de macro-algues supports des Dinoflagellés : Halimeda, Turbinaria et Dictyota.

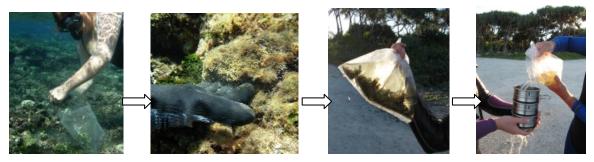


Figure 4 : Synthèse du protocole de prélèvement des micro-organismes : 1) prélèvement manuel en plongée, 2) extraction des micro-algues, 3) filtration et récupération des micro-organismes.

b)CYANOBACTÉRIES

Dans le cas, où de grandes surfaces de Cyanobactéries recouvrent le substrat de la station (> 5 m²), des échantillons sont récoltés. Les échantillons doivent être conservés dans les conditions adéquates jusqu'à leur traitement en laboratoire pour l'analyse de la toxicité.

I.B.2.TRAVAIL DE LABORATOIRE

a)OBSERVATIONS MICROSCOPIQUES

Au laboratoire, les observations microscopiques permettent d'identifier les organismes constituant des tapis de Cyanobactéries et leur analyse toxicologique permet d'évaluer leur nature et potentiel toxique.

b)ANALYSE DE LA TOXICITÉ

Pour les échantillons collectés en masse, l'analyse de la toxicité est effectuée selon le protocole précédemment décrit (Darius et al., 2007 ; Laurent et al., 2008). Brièvement, les toxines potentiellement présentes dans les prélèvements en masse de Dinoflagellés et de Cyanobactéries sont extraites à l'aide de solvants de polarité adéquate par séparation liquide-liquide. La toxicité des fractions susceptibles de contenir les ciguatoxines est évaluée par des tests de cytotoxicité spécifiques.

RESULTATS

I.A.RÉCOLTE

Au total, 12 missions mensuelles ont été réalisées dans le cadre de ce programme (Tableau 2). Ainsi, 341 échantillons d'observations ont été récoltés (322 pour les prélèvements de type « Dinoflagellés » et 19 pour l'observation de Cyanobactéries).

Tableau 2 : Bilan des missions du suivi ciguatérique effectuées en 2011.

2011	Jour	personnel	personnel	personnel	Plongée libre	Plongée bouteille	Prélèvement « Dino »	Prélèvement « Cyano »
OEIL 1	01/02/2011	ASK	AG	-	-	х	28	0
OEIL 2	28/02/2011	ASK	AG	-	-	Х	28	0
OEIL 3	31/03/2011	ASK	AG	-	Х	Х	28	0
OEIL 4	28/04/2011*	ASK	AG	-	Х	-	28	2
OEIL 5	31/05/2011	ASK	HL	CD	Х	-	28	1
OEIL 6	05/06/2011	AG	CD	ED	Х	-	28	1
OEIL 7	31/07/2011	AG	CD	AD	Х	-	28	2
OEIL 8	26/08/2011	AG	JS	CM	Х	Х	28	1
OEIL 9	26/09/2011	AG	FR	-	Х	-	28	2
OEIL 10	25/10/2011	AG	FR	-	Х	-	28	3
OEIL 11	29/11/2011	AG	FR	-	Х	-	28	3
OEIL 12	10/01/2012	AG	HL	-	Х	-	14	4

ASK: Anne-Sophie Kerbrat; AG: Adeline Goyaud; HL: Hélène Le Grand; CD: Claire Douchin; ED: Emilie Despois; AD: Alexia Dubuc; FR: François Roupsard; JS; Jérémy Simonnot; CM: Claude Mathieu; *Participation de Matthieu Juncker et Fabien Albouy de l'OEIL.

Le Tableau 3 synthétise les observations microscopiques de l'ensemble des stations durant les 12 missions, de janvier 2011 à janvier 2012. Les données par station, le détail des récoltes et les résultats des observations sont reportés en annexe 1.

Les observations (fractions 20 et 45 μ m) de Dinoflagellés, « D » et de Cyanobactéries « C » sont caractérisées par une classe de 1 à 3 quantifiant les cellules observées en densité croissante. Les stations pour lesquelles un prélèvement de Cyanobactéries a été réalisé sont surlignées.

Tableau 3 : Synthèse des observations et des prélèvements de Cyanobactéries faites par station sur la période de janvier 2011 à janvier 2012.

														Stat	ions													
	Cig	01	Cig		Cig	03	Cig	04	Cig	05	Cig	06	Cig	07	Cig	80	Cig	09	Cig	10	Cig	11	Cig	12	Cig	13	Cig	14
	èm/i cica	Dale NWe	,	רטור סטואפ	Récif	Prony	Récif	Prony intérieur	Bonne	Anse		race port	1	Por	ı	ı uyan	Vieux	wharf	02010	71age	Creek	Baie Nord	llot	Gabriel	Rade	Nord		race casy
	D	С	D	С	D	С	D	С	D	С	D	С	D	С	D	С	D	С	D	С	D	С	D	С	D	С	D	С
OEIL 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OEIL 2	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OEIL 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OEIL 4	-	-	-	1	-	-	-	-	-	1	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OEIL 5	-	-	-	1	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	1	-	-	-	-	-	-
OEIL 6	1	1	-	2	-	-	-	1	-	1	-	1	-	-	-	-	-	-	-	1	-	-	-	1	-	1	-	1
OEIL 7	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	1	-	-	-	1	-	-	-	-
OEIL 8	-	1	-	1	-	1	-	1	-	1	-	1	-	1	-	1	-	-	1		-	-	-	1	-	1	-	-
OEIL 9	-	2	-	1	-	2	-	1	-	1	-	-	-	1	1	-	-	-	1	1	-	-	-		-	-	-	-
OEIL 10	-	-	-	1	-	-	-	-	-	1	-	-	-	1	-	-	-	-	-	-	-	-	-	1	-	-	-	1
OEIL 11	-	-	-	1	-	-	-	-	-	1	-	-	-	-	-	1	-	-	-	-	-	-	-	1	-	-	-	1
OEIL 12	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	1	-	-	-	1	-	-	-	1	-	1	-	-

D = Dinoflagellés; C = Cyanobactéries; «-»= aucune observation de cellules de micro-algues ciguatoxiques; « 1 à 3 » = cellules de Dinoflagellés ou de Cyanobactéries observées selon une échelle de 1 à 3 ; la cellule surlignée de gris= Prélèvements de Cyanobactéries.

Remarque: la mission nommée OEIL12, initialement planifiée en fin décembre 2011, n'a pu avoir lieu qu'au début janvier en raison des conditions météorologiques présentant de fortes précipitations. En outre, durant cette mission pour des raisons logistiques, le réplicat B n'a pu être effectué et seules les observations de 45 μ m ont été réalisées.

La Figure 5 synthétise l'évolution temporelle des populations de Dinoflagellés et les Cyanobactéries observées durant l'année 2011. Les Dinoflagellés sont observés sporadiquement tout au long de la période d'observation et les Cyanobactéries, régulièrement avec une fréquence plus importante de juin à décembre.

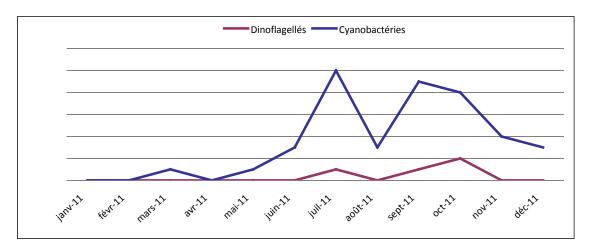


Figure 5 : Evolution temporelle en 2011 des populations de Dinoflagellés et des Cyanobactéries ciguatoxinogènes sur l'ensemble de la zone d'étude.

Note: L'ordonnée représentant la somme des valeurs de classe n'a pas de sens absolu en terme de valeurs, elle n'est donc pas spécifiée.

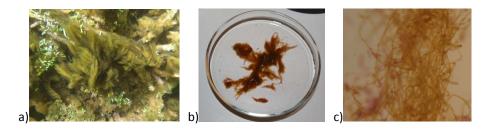
I.B.DINOFLAGELLÉS

Les données indiquent que les observations microscopiques des récoltes effectuées sur les stations suivies depuis janvier 2011 n'ont pas mis en évidence d'efflorescences de Dinoflagellés de genre *Gambierdiscus*, ni d'autres Dinoflagellés potentiellement toxique comme les *Prorocentrum* ou les *Ostreopsis*. Cependant, des cellules du genre *Gambierdiscus* (fraction 45 µm) ont été observées sur certaines stations comme la station de la Baie Kwé (Cig 01), du « Tuyau » (Cig 08) et de la « plage » (Cig 10) pour les mois de juin et septembre (classe de quantification = 1). L'observation de ces Dinoflagellés sur des stations indifféremment « témoin » (Cig 10) ou sujettes à perturbation (Cig 01 et Cig 08), indique que *Gambierdiscus* est présent à l'état naturel.

Les efflorescences de ces micro-organismes restent donc à surveiller sur le réseau de stations suivies.

Enfin, il est à noter que le paramètre « Diversité » (Annexe 1) permet de caractériser, en partie, l'état écologique de la zone suivie : une station où la diversité est importante indique, à priori, un écosystème équilibré et en bonne santé, celui-ci est alors moins sujet à la dominance d'un type d'organisme présent dans ce système (mono-spécificité). Ainsi, *a contrario*, si un genre de Dinoflagellé ciguatoxinogène est observé sur une station, la capacité d'efflorescence, et donc de risque ciguatoxique, est plus importante si la diversité (ou la richesse spécifique) est faible.

I.C.CYANOBACTÉRIES


Sur l'ensemble de l'année, 19 échantillons de Cyanobactéries ont été collectés. Ceux-ci sont récoltés au niveau de tapis cyanobactériens dont la surface inférieure à 5 m² n'a pas permis de collecter suffisamment de matière pour l'évaluation de la toxicité.

Les observations *in situ* et à la loupe binoculaire (fractions 20 et 45 µm) indiquent que ces Cyanobactéries sont de morphologie filamenteuse de l'ordre des *Oscillatoriales*. Elles sont plus fréquentes au niveau de Port Boisé (Cig 02), de Bonne Anse (Cig 05), du port de commerce (Cig 07) et de l'îlot Gabriel (Cig 12). De plus, il semble que leur développement serait plus favorable en fin de saison fraîche, de juin à septembre (Figure 5). Cette saisonnalité est à confirmer sur plusieurs cycles saisonniers, mais semble être récurrente sur les stations suivies depuis 2007 comme Bonne Anse (Cig 05), le Port (Cig 07) et l'îlot Gabriel (Cig12) (Kerbrat, 2010).

Quant à leur potentiel toxique, il n'a pas été possible de l'estimer due à une quantité de matière insuffisante. Néanmoins, leur présence sur les stations de Port Boisé, de Bonne Anse et du port de Vale NC reste à surveiller d'autant plus que sur ces deux dernières années des espèces du même genre, voire les mêmes, avaient déjà été observées sur ces mêmes stations et s'étaient avérées toxiques. En effet, des observations et des récoltes ont été effectuées à la fin de l'hiver austral de 2009 (mois d'août à septembre 2009) et l'évaluation de leur potentiel toxique avait été mis en évidence, notamment avec une toxicité aigüe de type ciguatérique (Kerbrat et Laurent, rapport Vale-INCO NC, 2010). Il en résulte que ces trois zones sont propices au développement de tapis cyanobactériens et méritent donc d'être suivie de manière régulière.

Enfin pour la station dite de la «Plage » dans la Rade Nord (Cig 10), les Oscillatoriales semblent appartenir à

l'espèce *Lyngbya majuscula* (Figure 6). Bien connue pour leur caractère invasif et toxique, leur <u>développement</u> <u>est à surveiller</u>.

Figure 6: Photographies $in \ situ$ (a) et prises de vue $in \ vitro$ (b) et à la loupe binoculaire (c) du prélèvement de Cyanobactéries récoltées en station Cig 10.

DISCUSSION

I.A.STRATÉGIE D'ÉCHANTILLONNAGE ET PERTINENCE DES STATIONS SUIVIES

Le choix des stations supplémentaires dans le cadre de ce suivi mis en place à la demande de l'OEIL a permis de couvrir de manière plus exhaustive la zone du Sud, notamment en intégrant les secteurs de la Baie Kwé et de l'embouchure du Creek de la Baie Nord.

Le suivi de ces deux stations présente l'intérêt de pouvoir évaluer les changements sur le paysage marin, changements pouvant être la conséquence des apports sédimentaires potentiellement croissants ou polluants. En effet, la Baie Kwé est sujette à des apports terrigènes et ses effets sont particulièrement accentués par les événements pluvieux. La création de couche turbide peut influer sur les populations coralliennes qui sont adaptées à une turbidité importante. Cependant, le « degré d'anthropisation », c'est-à-dire le niveau de pression qu'exerce l'activité humaine sur l'environnement marin, peut engendrer un facteur croissant de perturbation capable de dépasser le seuil de tolérance de ces organismes et ainsi provoquer leur dégradation.

Dans ces secteurs, les conséquences écologiques peuvent néanmoins être suivies grâce à la présence des populations de micro-organismes ciguatériques qui se développent préférentiellement sur des zones dégradées.

I.B.EVALUATION DU RISQUE CIGUATÉRIQUE PAR LE SUIVI DES MICRO-ORGANISMES

Sur l'ensemble de l'année 2011 :

i)Le suivi environnemental du risque ciguatérique à travers le suivi des populations de micro-organismes ciguatoxiques n'a pas mis en évidence, sur les stations retenues, d'efflorescence de **Dinoflagellés**. Cependant, leur présence a été démontrée indiquant qu'elles sont naturellement présentes dans la zone surveillée. Ainsi le risque d'efflorescence reste donc faible pour les stations concernées, mais elles nécessitent un suivi afin de contrôler leur dynamique.

ii)Les développements de **Cyanobactéries** sur les stations retenues, de Port Boisé (Cig 02), de Bonne Anse (Cig 05), de « la plage » (Cig 10) et du port (Cig 07), sont à surveiller. En effet, la présence de tapis

cyanobactériens majoritairement mono-spécifiques constitués d'espèces de l'ordre des Oscillatoriales ont été observés. Ces tapis de taille restreinte (< 5m²) n'ont pas permis l'évaluation de leur potentiel toxique, cependant, leur taille réduite permet de supposer que la contamination de la chaîne alimentaire est peu probable. Le risque ciguatérique lié à ces organismes reste donc limité.

En tenant compte de ces deux micro-organismes à la base du phénomène, le risque ciguatérique sur les stations sélectionnées et observées est donc considéré comme faible. Il est important de retenir que malgré un nombre de stations relativement exhaustif, un facteur d'erreur persiste sur l'évaluation de ce risque. En effet, les efflorescences de ces micro-organismes peuvent subvenir entre les campagnes de prélèvement (même si la fréquence reste optimisée).

Le suivi de chacun des niveaux trophiques, micro-organismes et poissons, apportent des informations quant à l'évaluation du risque ciguatérique, prévention et évaluation du niveau actuel respectivement; ils présentent chacun d'entre eux des incertitudes qui sont difficilement quantifiables. L'association des deux niveaux lors d'un suivi environnemental permet de diminuer fortement ce facteur d'erreur et d'affiner le niveau du risque.

I.C.EVALUATION DU RISQUE CIGUATÉRIQUE EN BAIE DU PRONY : TOXICITÉ DES POISSONS

En tenant compte des données collectées depuis 2005 (Kerbrat et Laurent, rapport Vale-INCO NC, 2010) et des résultats de cette étude, à l'heure actuelle, le suivi des micro-organismes ciguatoxinogènes n'a pas mis en évidence de risque ciguatérique majeure en Baie du Prony. En effet, comme spécifié ci-dessus, les Dinoflagellés ciguatoxiques sont présents naturellement sur les zones surveillées mais n'ont encore jamais été observés en état d'efflorescence et certaines zones sont à surveiller quant au développement de tapis cyanobactériens (Port Boisé (Cig 02), Bonne Anse (Cig 05), « la plage » (Cig 10) et le port (Cig 07)).

Récemment des cas d'intoxications par ingestion de poissons pêchés en Baie du Prony ont été rapportés (Clua, 2011). D'autre part, des études récentes sur des espèces de poissons dites sentinelles ont montré qu'il existe une proportion de la population des poissons qui peut être fortement toxique (saisons chaudes 2008 et 2009); en l'état actuel, le risque global est cependant considéré comme faible (Kerbrat, 2010). Les proportions de toxicité (niveau de toxicité et nombre d'individu toxique) se sont montrées comparables aux données relevées à Ouvéa, connue comme indemne de ciguatéra (risque faible). Ceci rappelle que le suivi des populations de micro-organismes permet de prévenir le risque ciguatérique généré dans une zone, mais ne permet pas forcement d'informer sur le risque qu'aura un poisson d'être toxique dans cette même zone. L'association des deux niveaux trophiques permet de combler, en partie, les incertitudes liées à chacun des niveaux de suivi et ce afin de donner une information pertinente aux écologues et aux consommateurs.

CE QU'IL FAUT RETENIR

A l'issu de ce suivi annuel et en tenant compte des données antérieures, il est possible de conclure que jusqu'ici, le risque ciguatérique dans le Sud est à considérer comme faible.

Le genre *Gambierdiscus* potentiellement ciguatoxique est présent sur le réseau de suivi ; leur dynamique est cependant à surveiller pour prévenir un risque accru si les conditions environnementales étaient favorables à

ı	٠	<u>.</u>	'tt	۱.	۰.		~ "	nce
	ДΗ	re	этт	റ	rρ	cr	ρr	ገርፁ

Certaines zones comme le Port, Bonne Anse et Port Boisé, où des populations de Cyanobactéries ont été observées, restent à surveiller de manière continue.

REFERENCES

Bagnis R, Chanteau S, Chungue E, Hurtel JM, Yasumoto T, Inoue A. 1980. Origins of ciguatera fish poisoning: a new dinoflagellate, Gambierdiscus toxicus Adachi and Fukuyo, definitively involved as a causal agent. *Toxicon*, 18(2):199-208.

Beliaeff B, Bouvet G, Fernandez JM, David C, Laugier T, 2011. Guide pour le suivi de la qualité du milieu marin en Nouvelle-Calédonie. Programme ZONECO et programme CNRT "Le Nickel et son environnement". 169pp.

Chinain M, Germain M, Deparis X, Pauillac S, Legrand AM, 1999. Seasonal abundance and toxicity of the dinoflagellate *Gambierdiscus* spp. (Dinophyceae), the causative agent of ciguatera in Tahiti, French Polynesia. *Marine Biology*, 135: 259-267.

Clua E, Brena PF, Lecasble C, Ghnassia R, Chauvet C, 2011. Prevalence and proposal for cost-effective management of the ciguatera risk in the Noumea fish market, New Caledonia (South Pacific). *Toxicon*, 58 (6-7): 591-601.

Clua E, 2011. Deux cas d'intoxication ciguatoxique par ingestion de poissons pêchés en Baie de Prony (Nouvelle-Calédonie). Bulletin médical (Nouvelle-Calédonie), n°58 : 23-25.

Darius HT, Ponton D, Revel T, Cruchet P, Ung A, Tchou Fouc M, Chinain M, 2007. Ciguatera risk assessment in two toxic sites of French Polynesia using the receptor-binding assay. *Toxicon*, 50 : 612-626.

Golubic S, Abed RMM, Palinska K, Pauillac S, Chinain M, Laurent D., 2010. Marine toxic cyanobacteria: Diversity, environmental responses and hazards. *Toxicon*, 56 (5): 836-841

Kerbrat AS, 2010. Rôle des cyanobactéries dans le développement des zones ciguatérigènes en lien avec les impacts anthropiques, pour une meilleure gestion du risque ciguatérique. Thèse de doctorat de l'Université de Pierre et Marie Curie.

Kerbrat AS, Laurent D, 2010. Risque ciguatérique en Baie de Prony lié au développement de l'usine de Vale Nouvelle-Calédonie. Convention de Recherche, IRD/Vale INCO NC n°1405, IRD-Nouméa, 115p.

Kerbrat AS, Amzil Z, Pawlowiez R, Golubic S, Sibat M, Darius HT, Chinain M, Laurent D, 2011. Marine Drugs, 9:543-560.

Laurent D, Kerbrat A-S, Darius HT, Girard E, Golubic S, Benoit E, Sauviat M-P, Chinain M, Molgo J, Pauillac S. 2008. Are cyanobacteria involved in Ciguatera Fish Poisoning-like outbreaks in New Caledonia? *Harmful Algae*, 7(6): 827-838.

Laurent D, Kerbrat AS, Darius HT, Rossi F, Yeeting B, Haddad M, Golubic S, Pauillac S, Chinain M, 2011. Ciguatera Shellfish Poisoning (CSP): A New Ecotoxicological Phenomenon from Cyanobacteria to Humans via Giant Clams. *Nova Science Publishers, Inc. In Food Chain: New research*, Ch.1:1-44.

Laurent D, Yetting B, Labrosse P & Gaudechoux JP, 2005. In: SPC and IRD (Eds), Ciguatera fish poisoning: A field reference guide. Nouméa, New Caledonia, pp. 1-88.

Lavoie I, Laurion I, Warren A, Vincent WF, 2007. Les fleurs d'eau de cyanobactéries, revue de littérature. INRS rapport, n° 916, xiii, 124 p.

Lehane L, Lewis RJ, 2000. Ciguatera: recent advances but the risk remains. *International journal of food microbiology*, 61: 91-125.

LISTE DES FIGURES

FIGURE 1 : SCHÉMA DE L'INTOXICATION PAR LA CHAÎNE ALIMENTAIRE VIA LES HERBIVORES OU LES MOLLUSQUES.	7
FIGURE 2 : LOCALISATION DES STATIONS DU SUIVI CIGUATÉRIQUE DANS LA ZONE DU SUD (BAIE DU PRONY À PORT BOISÉ)	11
FIGURE 3 : EXEMPLES DE MACRO-ALGUES SUPPORTS DES DINOFLAGELLÉS : HALIMEDA, TURBINARIA ET DICTYOTA.	13
Figure 4 : Synthèse du protocole de prélèvement des micro-organismes : 1) prélèvement manuel en plongée, 2) extraction des micro-algues, 3) filtration et récupération des micro-organismes	13
Figure 5 : Evolution temporelle en 2011 des populations de Dinoflagellés et des Cyanobactéries ciguatoxinogènes sur l'ensemble de la zone d'étude.	15
FIGURE 6 : PHOTOGRAPHIES <i>IN SITU</i> (A) ET PRISES DE VUE <i>IN VITRO</i> (B) ET À LA LOUPE BINOCULAIRE (C) DU PRÉLÈVEMENT DE	17

LISTE DES TABLEAUX

Tableau 1 : Liste des stations suivies : zone, nom et coordonnées GPS (référentiel WGS84)	10
Tableau 2 : Bilan des missions du suivi ciguatérique effectuées en 2011.	14
Tableau 3: Synthèse des observations et des prélèvements de Cyanobactéries faites par station sur la période de janvier	
2011 À JANVIER 2012	15

ANNEXES

Annexe 1: Données des prélèvements et des observations microscopiques par mission.

Annexe 2 : Cahier des charges pour l'évaluation du risque ciguatérique.

ANNEXE 1

DONNÉES DES PRÉLÈVEMENTS ET DES OBSERVATIONS MICROSCOPIQUES PAR MISSION.

Lecture des tableaux de données :

Les observations effectuées concernent la présence des Dinoflagellés et des Cyanobactéries ciguatoxinogènes ainsi que la diversité spécifique des prélèvements.

Les informations notées selon les items « Dinoflagellés », « Cyanobactéries » et « Diversité » sont données selon une échelle de 0 à 3.

Replicat B

OEIL 1 (01/02/2011)

Code	Nom de la station	heure d'arrivée	heure de départ	T°C surface	Nature Substrat	Masse (g)		Obs 20µm			Obs 45µm		Nature Substrat	Masse (g)		Obs 20μm		Ol	bs 45μm	
							Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries			Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries
CIG 01	Baie Kwé			27,8	Halimeda	150	0	2	0	0	3	0	Halimeda	150	0	0	0	0	0	0
CIG 02	Port Boisé			27,8	Halimeda	150	0	0	0	0	2	0	Halimeda	100	0	1	0	0	1	0
CIG 03	Récif Prony			27,7	Débris coralliens	-	0	1	0	0	1	0	Débris coralliens	-	0	0	0	0	0	0
CIG 04	Récif Prony intérieur			27,2	Débris coralliens	-	0	1	0	0	2	0	Débris coralliens	-	0	1	0	0	1	0
CIG 05	Bonne anse			27,8	Turbinaria	150	0	2	0	0	2	0	Turbinaria	100	0	0	0	0	0	0
CIG 06	Face port			28,0	Halimeda Turbinaria	400	0	0	0	0	0	0	Halimeda Turbinaria	300	0	0	0	0	0	0
CIG 07	Port			31,0	Halimeda	300	0	0	0	0	0	0	Halimeda	300	0	0	0	0	1	0
CIG 08	Tuyau			27,8	Halimeda	150	ND	ND	ND	0	0	0	Halimeda	200	0	0	0	0	1	0
CIG 09	Vieux wharf			28,0	Turbinaria	100	0	2	0	0	3	0	Halimeda Padina	400	0	0	0	0	0	0
CIG 10	Plage			28,0	Sargassum	120	0	2	0	0	2	0	Halimeda Turbinaria	500	0	2	0	0	3	0
CIG 11	Creek baie nord			28,3	Halimeda	150	0	0	0	0	1	0	Halimeda	200	0	0	0	0	0	0
CIG 12	Ilot Gabriel			27,9	Halimeda	400	0	0	0	0	2	0	Turbinaria	100	0	3	0	0	3	0
CIG 13	Rade Nord ouest			28,0	Halimeda	250	0	1	0	0	1	0	Turbinaria	100	0	2	0	0	2	0
CIG 14	Face casy			28,2	Halimeda	200	0	1	0	0	1	0	Halimeda	300	0	1	0	0	1	0

OEIL 2 (28/02/2011)

Replicat A Replicat B

Code	Nom de la station	heure d'arrivée	heure de départ	T°C surface	Nature Substrat	Masse (g)	(Obs 20μm			Obs 45μm		Nature Substrat	Masse (g)	C	Obs 20μm		Ol	os 45µm	
							Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries			Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries
CIG 01	Baie Kwé			-	Halimeda	400	0	0	0	0	3	0	Halimeda	400	0	0	1	0	0	0
CIG 02	Port Boisé			-	Halimeda	500	0	2	0	0	0	0	Halimeda	250	0	0	0	0	1	0
CIG 03	Récif Prony			-	débris coralliens	-	0	0	0	0	0	0	débris coralliens	-	0	0	0	0	0	0
CIG 04	Récif Prony intérieur			-	débris coralliens	-	0	2	0	0	0	0	débris coralliens	-	0	0	0	0	1	0
CIG 05	Bonne anse			-	Halimeda	300	0	0	0	0	2	0	Turbinaria	150	0	2	0	0	0	0
CIG 06	Face port			-	Halimeda	400	0	0	0	0	0	0	Halimeda	300	0	0	0	0	0	0
CIG 07	Port			-	Halimeda	-	0	0	0	0	0	0	Halimeda	500	0	0	0	0	1	0
CIG 08	Tuyau			-	Halimeda	700	0	0	0	0	2	0		-	0	0	0	0	1	0
CIG 09	Vieux wharf			-	Halimeda	200	0	0	0	0	0	0	Halimeda	600	0	2	0	0	0	0
CIG 10	Plage			-	Halimeda	500	0	0	0	0	0	0	Halimeda	300	0	2	0	0	3	0
CIG 11	Creek baie nord			-	Halimeda	400	0	0	0	0	0	0	Halimeda	300	0	0	0	0	0	0
CIG 12	Ilot Gabriel			-	Turbinaria	200	0	0	0	0	0	0	Halimeda	400	0	0	0	0	3	0
CIG 13	Rade Nord ouest			-	Halimeda	400	0	2	0	0	2	0	Halimeda	300	0	2	0	0	2	0
CIG 14	Face casy			-	Halimeda	300	0	2	0	0	0	0	Halimeda	400	0	2	0	0	1	0

OEIL 3 (31/03/2011)	Replicat A	Replicat B
---------------------	------------	------------

Code	Nom de la station	heure d'arrivée	heure de départ	T°C surface	Nature Substrat	Masse (g)		Obs 20µm			Obs 45µm		Nature Substrat	Masse (g)	1	Obs 20μm		o	bs 45μm	
							Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries			Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries
CIG 01	Baie Kwé			29,5	Halimeda	100	0	1	0	0	3	0	Halimeda	150	0	3	0	0	0	0
CIG 02	Port Boisé			29,1	Halimeda	150	0	0	0	0	0	0	Halimeda	150	0	3	0	0	1	0
CIG 03	Récif Prony			28,7	débris coralliens	-	0	0	0	0	0	0	débris coralliens	-	0	0	0	0	0	0
CIG 04	Récif Prony intérieur			28,7	Halimeda	200	0	3	0	0	0	0	Halimeda	100	0	3	0	0	1	0
CIG 05	Bonne anse			28,7	Turbinaria	150	0	3	0	0	0	0	Turbinaria	100	0	3	0	0	0	0
CIG 06	Face port			28,7	Turbinaria	100	0	2	0	0	2	0	Turbinaria	100	0	2	0	0	0	0
CIG 07	Port			28,5	Halimeda	300	0	0	0	0	2	0	Halimeda Turbinaria	250	0	0	0	0	1	0
CIG 08	Tuyau			28,6	Halimeda Turbinaria	150	0	2	0	0	1	0	Halimeda	250	0	2	0	0	1	0
CIG 09	Vieux wharf			28,5	Halimeda	250	0	1	0	0	2	0	Halimeda Turbinaria	200	0	2	0	0	0	0
CIG 10	Plage			28,7	Turbinaria	100	0	1	0	0	0	0	Halimeda	350	0	2	0	0	3	0
CIG 11	Creek baie nord			28,5	Halimeda	600	0	0	0	0	0	0	Halimeda	200	0	1	0	0	0	0
CIG 12	Ilot Gabriel			28,6	Halimeda Turbinaria	300	0	3	0	0	3	0	Turbinaria	100	0	2	0	0	3	0
CIG 13	Rade Nord ouest			28,6	Halimeda Turbinaria	350	0	2	0	0	2	0	Turbinaria	150	0	0	0	0	2	0
CIG 14	Face casy			28,6	Turbinaria	150	0	0	0	0	0	0	Turbinaria	150	0	0	0	0	1	0

OEIL 4 (28/04/2011) Replicat A Replicat B

Code	Nom de la station	heure d'arrivée	heure de départ	T°C surface	Nature Substrat	Masse (g)		Obs 20μm			Obs 45μm		Nature Substrat	Masse (g)		Obs 20μm		c	Obs 45µm	
							Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries			Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries
CIG 01	Baie Kwé			24,6	Halimeda	200	0	0	0	0	0	0	Halimeda	250	0	0	0	0	0	0
CIG 02	Port Boisé			24,9	Halimeda	250	0	0	0	0	0	0	Halimeda	450	0	0	0	0	2	1
CIG 03	Récif Prony			26,2	débris coralliens	-	0	2	0	0	0	0	débris coralliens	-	0	2	0	0	2	0
CIG 04	Récif Prony intérieur			26,2	débris coralliens	-	0	0	0	0	0	0	Halimeda	200	0	0	0	0	0	0
CIG 05	Bonne anse			26,2	Turbinaria	100	0	0	0	0	2	0	Turbinaria	100	0	2	0	0	0	0
CIG 06	Face port			25,9	Turbinaria	150	0	2	0	0	2	0	Halimeda Turbinaria	200	0	0	0	0	0	0
CIG 07	Port			26	Halimeda	300	0	2	0	0	2	0	Halimeda	350	0	0	0	0	0	0
CIG 08	Tuyau			26,2	Halimeda	300	0	2	0	0	0	0	Halimeda	300	0	0	0	0	0	0
CIG 09	Vieux wharf			25,9	Halimeda	400	0	1	0	0	2	0	Halimeda	200	0	2	0	0	0	0
CIG 10	Plage			26,1	Halimeda	240	0	1	0	0	1	0	Turbinaria	250	0	2	0	0	2	0
CIG 11	Creek baie nord			26	Halimeda	ND	0	2	0	0	2	0	Halimeda	ND	0	2	0	0	2	0
CIG 12	Ilot Gabriel			26	Halimeda Turbinaria	550	0	2	0	0	2	0	Turbinaria	100	0	2	0	0	2	0
CIG 13	Rade Nord ouest			25,8	Turbinaria	200	0	2	0	0	2	0	Turbinaria	200	0	2	0	0	2	0
CIG 14	Face casy			25,9	Halimeda	400	0	2	0	0	0	0	Turbinaria	150	0	2	0	0	2	0

OEIL 5 (31/05/2011) Replicat	Replicat B
-------------------------------------	------------

Code	Nom de la station	heure d'arrivée	heure de départ	T°C surface	Nature Substrat	Masse (g)		Obs 20μm	1		Obs 45μn	n	Nature Substrat	Masse (g)		Obs 20µm		(Obs 45μm	ı
							Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries			Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries
CIG 01	Baie Kwé			-	Halimeda	200	0	2	0	0	1	0	Halimeda	200	0	1	0	0	0	0
CIG 02	Port Boisé			-	Halimeda	300	0	0	0	0	3	0	Halimeda	210	0	1	0	0	2	1
CIG 03	Récif Prony			-	Turbinaria	175	0	1	0	0	3	0	Turbinaria	175	0	0	0	0	2	0
CIG 04	Récif Prony intérieur			-	Halimeda	100	0	1	0	0	0	0	Halimeda	200	0	0	0	0	0	0
CIG 05	Bonne anse			-	Halimeda	300	0	0	0	0	0	0	Halimeda	180	0	0	0	0	0	0
CIG 06	Face port			-	Halimeda	250	0	0	0	0	0	0	Turbinaria	80	0	2	0	0	0	0
CIG 07	Port			-	Halimeda	280	0	0	0	0	2	1	Halimeda	300	0	0	0	0	0	0
CIG 08	Tuyau			-	Halimeda	250	0	0	0	0	0	0	Halimeda	300	0	0	0	0	0	0
CIG 09	Vieux wharf			-	Halimeda	250	0	0	0	0	0	0	Halimeda	200	0	0	0	0	0	0
CIG 10	Plage			-	Turbinaria	150	0	0	0	0	0	0	Halimeda	220	0	0	0	0	2	0
CIG 11	Creek baie nord			-	Turbinaria	50	0	2	0	0	2	1	Turbinaria	100	0	1	0	0	2	0
CIG 12	Ilot Gabriel			-	débris coralliens	-	0	0	0	0	0	0	débris coralliens	-	0	0	0	0	2	0
CIG 13	Rade Nord ouest			-	débris coralliens	-	0	0	0	0	0	0	débris coralliens	-	0	0	0	0	2	0
CIG 14	Face casy			-	Halimeda	250	0	0	0	0	1	0	Halimeda	200	0	0	0	0	2	0

OEIL 6 (05/06/2011)	Replicat A	Replicat B
---------------------	------------	------------

Code	Nom de la station	heure d'arrivée	heure de départ	T°C surface	Nature Substrat	Masse (g)		Obs 20μm		(Obs 45μm		Nature Substrat	Masse (g)	1	Obs 20μm		Ok	os 45µm	
							Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries			Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries
CIG 01	Baie Kwé			24,7	Halimeda	200	0	1	0	0	1	0	Halimeda et Dictyota	300	0	2	1	1	3	1
CIG 02	Port Boisé			24,5	Halimeda	320	0	1	0	0	1	0	Halimeda	190	0	3	1	0	3	1
CIG 03	Récif Prony			23,2	débris coralliens	-	0	1	0	0	1	0	débris coralliens	-	0	1	0	0	2	0
CIG 04	Récif Prony intérieur			24,5	débris coralliens	-	0	1	0	0	2	1	débris coralliens	-	0	1	0	0	1	0
CIG 05	Bonne anse			24,5	Turbinaria	140	0	1	1	0	1	1	Turbinaria et Halimeda	200	0	1	0	0	2	1
CIG 06	Face port			24,8	Turbinaria	190	0	1	0	0	1	0	Turbinaria	200	0	1	1	0	1	0
CIG 07	Port			23,6	Halimeda	360	0	1	0	0	1	0	Halimeda	360	0	1	0	0	1	0
CIG 08	Tuyau			23,8	Halimeda	280	0	1	0	0	1	0	Halimeda	430	0	1	0	0	1	0
CIG 09	Vieux wharf			23,6	Halimeda	300	0	1	0	0	1	0	Halimeda	580	0	2	0	0	2	0
CIG 10	Plage			24,4	Turbinaria	500	0	2	1	0	1	1	Turbinaria	490	0	2	0	0	1	0
CIG 11	Creek baie nord			23,2	Halimeda	400	0	1	0	0	1	0	Halimeda	320	0	1	0	0	1	0
CIG 12	Ilot Gabriel			23,5	Halimeda	480	0	2	1	0	1	1	Halimeda	460	0	1	0	0	1	0
CIG 13	Rade Nord ouest			22,5	Halimeda	440	0	1	0	0	1	0	Halimeda	280	0	1	0	0	1	1
CIG 14	Face casy			-	Halimeda	220	0	2	0	0	2	0	Halimeda	320	0	3	1	0	2	1

OEIL 7 (31/07/2011)	Desilies A	David and D
UEIL / (31/U//2U11)	Replicat A	Replicat B

Code	Nom de la station	heure d'arrivée	heure de départ	T°C surface	Nature Substrat	Masse (g)	Obs 20µm			Obs 45μn	n	Nature Substrat	Masse (g)		Obs 20μm		C	Obs 45μm		
							Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries			Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries
CIG 01	Baie Kwé			21,6	Halimeda	400	0	2	0	0	2	0	Halimeda	210	0	2	0	0	1	0
CIG 02	Port Boisé			22,4	Halimeda	270	0	2	0	0	2	0	Halimeda	240	0	2	0	0	2	0
CIG 03	Récif Prony			22,3	débris corallien	-	0	0	0	0	0	0	débris corallien	-	0	2	0	0	1	0
CIG 04	Récif Prony intérieur			22,1	débris corallien	-	0	0	0	0	2	0	débris corallien	-	0	2	0	0	0	0
CIG 05	Bonne anse			22	Turbinaria	240	0	3	1	0	3	0	Turbinaria	240	0	3	0	0	2	0
CIG 06	Face port			23,1	Turbinaria	200	0	2	0	0	1	0	Halimeda	360	0	0	0	0	0	0
CIG 07	Port			22,5	Halimeda	380	0	0	0	0	1	0	Halimeda	400	0	0	0	0	0	0
CIG 08	Tuyau			22,5	Halimeda	460	0	0	0	0	1	0	Halimeda	500	0	0	0	0	1	0
CIG 09	Vieux wharf			22,8	Halimeda	400	0	0	0	0	1	0	Halimeda	300	0	2	0	0	2	0
CIG 10	Plage			22,5	Halimeda	500	0	1	0	0	1	1	Halimeda	580	0	2	0	0	0	0
CIG 11	Creek baie nord			22,7	Halimeda	540	0	2	0	0	1	0	Halimeda	300	0	2	0	0	2	0
CIG 12	Ilot Gabriel			26,3	Halimeda	400	0	2	0	0	1	1	Halimeda	600	0	3	0	0	0	0
CIG 13	Rade Nord ouest			23,6	Halimeda	480	0	0	0	0	1	0	Halimeda	400	0	0	0	0	0	0
CIG 14	Face casy			22,5	Halimeda	380	0	0	0	0	2	0	Halimeda	320	0	2	0	0	2	0

OEIL 8 (26/08/2011)	Replicat A	Replicat B
---------------------	------------	------------

Code	Nom de la station	heure d'arrivée	heure de départ	T°C surface	Nature Substrat	Masse (g)		Obs 20μm			Obs 45μr	m	Nature Substrat	Masse (g)		Obs 20μm	l	(Obs 45μm	1
							Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries			Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries
CIG 01	Baie Kwé	8h10	8h15	23	Halimeda	280	0	1	1	0	1	1	Halimeda et Débris coralliens	-	0	1	0	ND	ND	ND
CIG 02	Port Boisé	8h25	8h30	23	Halimeda	160	0	2	0	0	1	0	Halimeda	300	0	1	0	0	2	1
CIG 03	Récif Prony	9h30	9h40	23	Débris coralliens	-	0	2	0	0	1	1	Débris coralliens	-	0	1	1	0	2	1
CIG 04	Récif Prony intérieur	9h45	9h55	23	Débris coralliens	-	0	1	1	0	2	1	Débris coralliens	-	0	1	1	0	1	0
CIG 05	Bonne anse	10h00	10h12	23	Turbinaria	200	0	2	0	0	2	1	Turbinaria	220	0	1	0	0	1	0
CIG 06	Face port	10h20	10h36	23	Turbinaria	180	0	2	1	0	2	1	Turbinaria	260	ND	ND	ND	0	2	0
CIG 07	Port	13h00	13h20	24	Dictyota	200	0	2	0	ND	ND	ND	Halimeda	240	0	2	0	0	1	0
CIG 08	Tuyau	10h19	10h22	22	Halimeda	400	0	2	1	0	1	0	Halimeda	740	0	1	1	ND	ND	ND
CIG 09	Vieux wharf	10h33	10h40	22	Halimeda	500	0	1	0	0	0	0	Halimeda	420	0	1	0	0	0	0
CIG 10	Plage	10h52	10h57	22	Halimeda	360	0	1	0	0	2	0	Halimeda	480	0	1	1	1	1	0
CIG 11	Creek baie nord	11h05	11h11	24	Halimeda	680	0	0	0	0	1	0	Halimeda	400	0	0	0	0	1	0
CIG 12	Ilot Gabriel	11h19	11h25	24	Halimeda	460	0	1	0	0	3	0	Halimeda	600	0	2	0	0	2	1
CIG 13	Rade Nord ouest	11h13	11h21	24	Turbinaria	180	0	2	0	0	1	1	Turbinaria	260	0	2	0	0	1	1
CIG 14	Face casy	11h37	11h46	24	Halimeda	500	0	1	0	ND	ND	ND	Halimeda	380	0	1	0	0	1	0

Rade Nord

CIG 14 Face casy

12h15 12h25

12h55

24,4

12h50

CIG 13

OEIL :	9 (26/09/	2011)						Replica	t A							Replica	at B			
Code	Nom de la station	heure d'arrivée	heure de départ	T°C surface	Nature Substrat	Masse (g)		Obs 20μm			Obs 45μm	1	Nature Substrat	Masse (g)		Obs 20μm	l	Ó	Obs 45μm	
							Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries			Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries
CIG 01	Baie Kwé	8h55	9h07	23,1	Halimeda	480	0	2	0	0	3	0	Halimeda	500	0	2	2	0	3	1
CIG 02	Port Boisé	9h18	9h27	24,2	Halimeda Turbinaria	300	0	2	0	0	1	0	Halimeda	500	0	1	1	0	3	1
CIG 03	Récif Prony	9h50	9h59	23,8	Débris coralliens	-	0	1	0	0	0	2	Débris coralliens	-	0	1	0	0	1	0
CIG 04	Récif Prony intérieur	10h01	10h07	24	Débris coralliens	-	0	1	0	0	1	1	Débris coralliens	-	0	1	0	0	1	0
CIG 05	Bonne anse	10h15	10h32	23,4	Turbinaria	200	0	1	0	0	1	1	Turbinaria	300	0	1	0	0	1	1
CIG 06	Face port	10h46	10h55	24,2	Turbinaria	300	0	1	0	0	0	0	Turbinaria	360	0	0	0	0	1	0
CIG 07	Port	11h00	11h07	24,2	Turbinaria	300	0	2	0	0	2	0	Halimeda	600	0	2	0	0	2	1
CIG 08	Tuyau	11h15	11h22	24,5	Halimeda	580	0	1	0	1	2	0	Halimeda	580	0	3	0	0	3	0
CIG 09	Vieux wharf	11h30	11h36	24,6	Halimeda	720	0	2	0	0	1	0	Halimeda	600	0	1	0	0	1	0
CIG 10	Plage	11h40	11h48	24,7	Turbinaria	200	0	1	0	0	3	0	Halimeda	400	0	0	0	1	1	0
CIG 11	Creek baie nord	11h55	12h03	25,2	Turbinaria	400	0	0	0	0	0	0	Halimeda	550	0	0	0	0	0	0
CIG 12	Ilot Gabriel	12h11	12h16	24,3	Halimeda	540	0	1	0	0	1	0	Halimeda	620	0	1	0	0	1	0

© AEL / LEA Environnement

Turbinaria

Turbinaria

Turbinaria

Halimeda

OEIL 10 (25/10/2011) Replicat A Replicat B

Code	Nom de la station	heure d'arrivée	heure de départ	T°C surface	Nature Substrat	Masse (g)		Obs 20μm			Obs 45µm		Nature Substrat	Masse (g)		Obs 20μm		C	bs 45μm	
							Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries			Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries
CIG 01	Baie Kwé	9h25	9h30	24,2	Halimeda	500	0	2	0	0	2	0	Halimeda	600	0	2	0	0	1	0
CIG 02	Port Boisé	9h42	9h53	24,8	Halimeda	100	0	2	0	0	2	0	Halimeda	150	0	2	0	0	2	1
CIG 03	Récif Prony	10h24	10h31	24	Débris coralliens	-	0	2	0	0	1	0	Débris coralliens	-	0	2	0	0	1	0
CIG 04	Récif Prony intérieur	10h40	10h47	24,2	Débris coralliens	-	0	2	0	0	1	0	Débris coralliens	-	0	2	0	0	2	0
CIG 05	Bonne anse	10h54	11h02	23,9	Débris coralliens	-	0	1	0	0	2	0	Débris coralliens	-	0	2	1	0	2	0
CIG 06	Face port	11h14	11h19	23,8	Halimeda	280	0	1	0	0	1	0	Halimeda	350	0	1	0	0	1	0
CIG 07	Port	11h27	11h35	24	Halimeda	480	0	2	0	0	1	0	Turbinaria	220	0	3	0	0	3	0
CIG 08	Tuyau	11h45	11h50	23,4	Halimeda	210	0	2	0	0	3	0	Halimeda	240	0	1	0	0	1	0
CIG 09	Vieux wharf	11h55	12h03	23,5	Halimeda	200	0	1	0	0	1	0	Halimeda	250	0	1	0	0	1	0
CIG 10	Plage	12h10	12h18	23,9	Halimeda	200	0	2	0	0	1	0	Turbinaria	170	0	2	0	0	2	0
CIG 11	Creek baie nord	12h22	12h30	24,4	Halimeda	500	0	1	0	0	1	0	Halimeda	520	0	2	0	0	1	0
CIG 12	Ilot Gabriel	12h40	12h48	24,5	Halimeda	360	0	3	1	0	3	1	Halimeda	460	0	3	1	0	2	0
CIG 13	Rade Nord ouest	12h54	13h01	24,5	Turbinaria	300	0	2	0	0	2	0	Turbinaria	280	0	3	0	0	2	0
CIG 14	Face casy	13h20	13h29	24,5	Halimeda	360	0	2	1	0	2	0	Turbinaria	210	0	3	0	0	2	0

OEIL 11 (29/11/2011)	Replicat A	Replicat B
----------------------	------------	------------

Code	Nom de la station	heure d'arrivée	heure de départ	T°C surface	Nature Substrat	Masse (g)	Obs 20μm			Obs 45µm			Nature Substrat	Masse (g)		Obs 20μm		Obs 45μm			
							Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries			Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries	
CIG 01	Baie Kwé	9h25	9h30	24,2	Halimeda	450	0	2	0	0	2	0	Halimeda	450	0	2	0	0	1	0	
CIG 02	Port Boisé	9h42	9h53	24,8	Halimeda	100	0	2	0	0	2	0	Halimeda	100	0	2	0	0	2	1	
CIG 03	Récif Prony	10h24	10h31	24	Débris coralliens	-	0	2	0	0	1	0	Débris coralliens	-	0	2	0	0	1	0	
CIG 04	Récif Prony intérieur	10h40	10h47	24,2	Débris coralliens	-	0	2	0	0	1	0	Débris coralliens	-	0	2	0	0	2	0	
CIG 05	Bonne anse	10h54	11h02	23,9	Débris coralliens	-	0	1	0	0	2	0	Débris coralliens	-	0	2	1	0	2	0	
CIG 06	Face port	11h14	11h19	23,8	Halimeda	280	0	1	0	0	1	0	Halimeda	350	0	1	0	0	1	0	
CIG 07	Port	11h27	11h35	24	Halimeda	280	0	2	0	0	1	0	Turbinaria	160	0	3	0	0	3	0	
CIG 08	Tuyau	11h45	11h50	23,4	Halimeda	210	0	2	0	0	3	0	Halimeda	200	0	1	0	0	1	0	
CIG 09	Vieux wharf	11h55	12h03	23,5	Halimeda	100	0	1	0	0	1	0	Halimeda	250	0	1	0	0	1	0	
CIG 10	Plage	12h10	12h18	23,9	Halimeda	200	0	2	0	0	1	0	Turbinaria	250	0	2	0	0	2	0	
CIG 11	Creek baie nord	12h22	12h30	24,4	Halimeda	250	0	1	0	0	1	0	Halimeda	250	0	2	0	0	1	0	
CIG 12	Ilot Gabriel	12h40	12h48	24,5	Halimeda	300	0	3	1	0	3	1	Halimeda	100	0	3	1	0	2	0	
CIG 13	Rade Nord ouest	12h54	13h01	24,5	Turbinaria	300	0	2	0	0	2	0	Turbinaria	250	0	3	0	0	2	0	
CIG 14	Face casy	13h20	13h29	24,5	Halimeda	150	0	2	1	0	2	0	Turbinaria	100	0	3	0	0	2	0	

OEIL 12 (10/01/2012) Replicat A Replicat B

Code	Nom de la station	heure d'arrivée	heure de départ	T°C surfac e	Nature Substrat	Masse (g)	Obs 20μm			Obs 45µm			Nature Substrat	Masse (g)		Obs 20μm		Obs 45μm			
							Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries			Dinoflagellés	Diversité	Cyanobactéries	Dinoflagellés	Diversité	Cyanobactéries	
CIG 01	Baie Kwé	9h05	9h12	26,9	Halimeda	280	ND	ND	ND	0	2	0	ND	ND	ND	ND	ND	ND	ND	ND	
CIG 02	Port Boisé	9h20	9h28	27,0	Halimeda	200	ND	ND	ND	0	3	0	ND	ND	ND	ND	ND	ND	ND	ND	
CIG 03	Récif Prony	9h56	10h03	27,6	Débris coralliens	-	ND	ND	ND	0	1	0	ND	ND	ND	ND	ND	ND	ND	ND	
CIG 04	Récif Prony intérieur	-	-	-	Débris coralliens	-	ND	ND	ND	0	nd	0	ND	ND	ND	ND	ND	ND	ND	ND	
CIG 05	Bonne anse	10h08	10h19	28,0	Turbinaria	320	ND	ND	ND	0	3	0	ND	ND	ND	ND	ND	ND	ND	ND	
CIG 06	Face port	10h35	10h42	27,5	Halimeda	300	ND	ND	ND	0	2	0	ND	ND	ND	ND	ND	ND	ND	ND	
CIG 07	Port	10h59	10h53	27,9	Halimeda	600	ND	ND	ND	0	1	0	ND	ND	ND	ND	ND	ND	ND	ND	
CIG 08	Tuyau	11h45	11h04	27,7	Halimeda	300	ND	ND	ND	0	1	0	ND	ND	ND	ND	ND	ND	ND	ND	
CIG 09	Vieux wharf	11h06	11h11	27,7	Halimeda	300	ND	ND	ND	0	2	0	ND	ND	ND	ND	ND	ND	ND	ND	
CIG 10	Plage	11h14	11h20	28,2	Halimeda	600	ND	ND	ND	0	2	0	ND	ND	ND	ND	ND	ND	ND	ND	
CIG 11	Creek baie nord	11h23	11h29	28,0	Halimeda	500	ND	ND	NDd	0	2	0	ND	ND	ND	ND	ND	ND	ND	ND	
CIG 12	Ilot Gabriel	11h33	11h40	27,8	Halimeda	500	ND	ND	ND	0	3	1	ND	ND	ND	ND	ND	ND	ND	ND	
CIG 13	Rade Nord ouest	11h46	11h53	29,1	Halimeda	500	ND	ND	ND	0	2	0	ND	ND	ND	ND	ND	ND	ND	ND	
CIG 14	Face casy	12h10	12h18	28,6	Halimeda	400	ND	ND	ND	0	2	0	ND	ND	ND	ND	ND	ND	ND	ND	

NOTE: Pour des raisons logistiques, le réplicat B n'a pu être effectué et seules les observations de 45 μm ont été réalisées. En outre, la mission n'a pu avoir lieu qu'en début janvier en raison des conditions météorologiques.

ANNEXE 2

CAHIER DES CHARGES POUR L'ÉVALUTION DU RISQUE CIGUATÉRIQUE.

1. Objectifs

« Evaluer le risque ciguatérique d'une zone » permet de dire à l'issu d'un suivi environnemental et écotoxicologique quel est le risque que la zone identifiée soit ciguatoxique, c'est-à-dire qu'elle est le risque qu'un poisson pêché soit toxique pour le consommateur. Il est possible de graduer le risque ciguatérique par un échelle de risque (Béliaeff et al., 2011).

2. Démarche scientifique

Deux niveaux écologiques d'évaluation du risque sanitaire peuvent être définis de la manière suivante :

- NIVEAU 1 : MICRO-ORGANISMES => Les paramètres suivis concernent les populations de microorganismes ciguatoxinogènes (Dinoflagellés et Cyanobactéries), il s'agit de i) leur identification, ii) leur quantification et iii) l'évaluation de leur potentiel toxique.
- NIVEAU 2 : POPULATIONS DE POISSONS => Le paramètre suivi est la proportion de poissons contaminés appartenant à des populations d'espèces dites « sentinelles » et leur niveau de toxicité. intégrateur du risque

Au regard des connaissances actuelles et de la complexité du phénomène ciguatérique, les risques d'erreur inhérents à chacun des niveaux écologiques ne sont pas évalués de manière fiable et précise. C'est pour quoi, il est fortement recommandé de coupler les deux niveaux.

3. Méthodologie

NIVEAU 1: MICRO-ORGANISMES

- Eléments de stratégie d'échantillonnage :

La fréquence du suivi des micro-organismes (Dinoflagellés et Cyanobactéries) est mensuelle.

Opérations de terrain

Dans une zone définie, de maximum 50 à 100 m le long de la côte, collecter deux prélèvements au minimum. Pour détecter la présence des Dinoflagellés du genre *Gambierdiscus* : récolter les algues-support des microalgues (par exemple du genre : *Turbinaria*, *Halimeda*, *Dictyota...*), les agiter avec de l'eau de mer dans une poche plastique, filtrer sur tamis, récupérer les fractions d'intérêt (45 µm et 20 µm) qui seront ensuite observées au laboratoire.

Pour détecter la présence des populations de cyanobactéries potentiellement toxiques : *i*) en cas de présence en quantité faible (surface inférieure à 5 m²), faire un prélèvement « simple » à la main ou à l'aide d'une pince. Stabiliser le prélèvement au formol (5% en eau de mer) ; *ii*) en cas d'efflorescence (forte densité et recouvrement de surface supérieure à 5 m²), prélever une quantité de matière (au minimum 500 mL) à l'aide d'un « aspirateur sous-marin » pour évaluer sa toxicité (nature et degré).

Opérations de laboratoire

• Identification des espèces et dénombrement

L'identification et le dénombrement sont évalués à l'aide d'observations microscopiques. L'identification au niveau du genre ne nécessite aucune technique de coloration. Pour les Dinoflagellés, le dénombrement des prélèvements est exprimé en nombre de cellules par gramme d'algue récolté et pour les Cyanobactéries, en nombre d'individu (ou trichome) par litre.

Evaluation du potentiel toxique

Pour les deux types d'organisme, des prélèvements collectés en masse sont traités au laboratoire afin d'extraire les toxines ciguatériques selon une méthode dite « rapide » (extraction par solvant). La nature et la concentration des toxines susceptibles d'être présentes sont évaluées par un test de cytotoxicité spécifique.

NIVEAU 2: POPULATIONS DE POISSONS

- Eléments de stratégie d'échantillonnage

La fréquence de la collecte des poissons recommandée est semestrielle : une saison froide et une saison chaude. Selon la zone d'étude, une espèce dite « sentinelle » est définie afin de donner une information quant au niveau de contamination des populations pisciaires, et donc du stade d'accumulation du phénomène ciguatérique. Les critères de choix comprennent : régime alimentaire ; espèces représentatives des sites sélectionnés, espèces consommées par les populations, espèces présentes dans chacune des zones, espèces présentes en nombre suffisant (collecte à $n \ge 5$). Identifier au minimum 2 espèces sentinelles ; comme par exemple : une espèce de bas de chaîne (Scaridés) et une espèce en haut de chaîne alimentaire (Serranidés).

Opérations de terrain

Dans une zone définie de maximum 300-400 m le long de la côte, collecter cinq individus au minimum par espèce sentinelle. Pour chaque individu collecté, noter l'espèce, les métriques (poids frais et longueur à la fourche) et photographier l'individu dès sa prise. Puis, prélever l'intégralité d'un filet.

Opérations de laboratoire

Les filets sont broyés intégralement. L'extraction des toxines ciguatériques est effectuée sur trois aliquotes de 5 g de chair. Les toxines sont extraites par solvant selon une méthode dite « rapide ». La nature et la concentration des toxines susceptibles d'être présentes sont évaluées par un test de cytotoxicité spécifique. La proportion d'individu toxique pour l'Homme est calculée en pourcentage du nombre total d'individu. Trois degrés de toxicité peuvent être définis : atoxique, moyennement toxique et fortement toxique.

4. Contraintes

Afin d'établir le réseau de stations suivies, de sélectionner les zones de pêches de poissons et les espèces cibles, différents points sont à prendre en compte et à mettre en place avec les scientifiques détenant l'expertise :

- Délimitation et Identification de la zone d'étude ;
- Evaluation des facteurs de perturbations de l'environnement (zone des 20-30 m de profondeur);
- Identification des sites de suivi en tenant compte :
 - Du niveau d'évaluation (niveau 1 ou/et niveau 2) ;
 - Du niveau de fiabilité de l'évaluation du risque ;
 - De la superficie de la zone d'étude ;
 - Des contraintes financières.